一、Term
Semi-conservative半保留复制
Density gradient centrifugation 密度梯度离心
Semi-discontinuous replication半不连续复制
Okazaki fragment冈崎片段
Holoenzyme全酶
RNA primase(Primase)引物酶
Primosome引物合成体(引发体)
Telomerases端粒酶
telomere repeats端粒重复序列
leading strand 前导链
lagging strand 后随链
Replication Complex复制复合体
Replication Fork复制叉
Bidirectional replication (双向复制):θ structure
Unidirectional replication(单向复制)
Rolling circle replication(滚环复制):σ model
ORI( 复制起始子 )
Replicon (复制子) : all the DNA replicated from one origin of replication
Strand separation: Helicase解旋酶
Single-Strand DNA-Binding protein: SSBP
Topoisomerases拓扑异构酶
Primease引物酶
DNA polymearses: three types (DNA聚合酶)
DNA ligase:DNA连接酶
二、实验
1、The Meselson-Stahl Experiment:
不同的复制方式产生不同的子代 DNA 分子。因此,如能把新合成的 DNA 分子从模板 DNA 分子分离开,则复制模式就能确定。根据这种思想, Matthew Meselson and Franklin Stahl 设计用 15N 同位素产生不同重量 的 DNA 分子及超速离心机分离不同重量 DNA 分子的实验。
大肠杆菌细胞在 15N 培养基(重培养基)中培养数代,产生含重氮 ( 15N )的大分子(包括 15N-DNA 分子),而后移到正常培养基( 14 N )上培养,在不同时间提取 DNA 样品并在 CsCl 溶液中超速离 心。 Cscl 溶液在超速离心下形成密度梯度。 DNA 分子在该密度梯度 中迁移,并在与其密度与溶液密度相同点达平衡。
2、Okazaki 假设 DNA 合成有 3 种方式:连续、半不连续与不连续方式。
(1)使用T4噬菌体,Phage T4: simplicity; availability of T4 ligase mutant同时使用了T4连接酶的突变体,使得复制过程中产生的短片段没法连接起来;
(2)Shorter pulses of 3H-labeled thymidine of E.coli cells that were replicating T4 DNA
(3)Using ultracentrifugation 超速离心to measure the sizes of the newly synthesized DNAs
3、Primer Dependence
Hypothesis:
DNA polymerase can not initiate DNA synthesis without a 10-12 nt long RNA primer
DNA聚合酶不能启动DNA合成,没有10-12个核苷酸的长RNA引物
Evidence :
– Rifampicin inhibits M13 phage (E. coil) DNA replication (Rifampicin is known to inhibit RNA polymerase,not DNA polymerase)
利福平抑制M13噬菌体DNA复制(已知利福平抑制RNA聚合酶,而不是DNA聚合酶)
– DNase can’t completely destroy Okazaki fragment. It will left little piece of RNA 10-12 bases long DNA酶不能完全摧毁冈崎片段。它将留下一小段10-12个碱基长的RNA
三、DNA复制的特征
1、Semi-conservative (半保留复制)
2、Semi-discontinuous (半不连续复制)
3、DNA polymerases are template- and primer-dependent
(DNA 聚合酶依赖于 DNA 模板与引物 )
4、All DNA polymerases synthesize DNA in the 5‘ to 3’ direction, reading the template 3‘ to 5’(所有的DNA聚合酶按5‘-3’方向[模板DNA为3‘-5’方向]合成 DNA)
5、DNA polymerases require the four deoxynucleoside triphosphates (dATP, dGTP, dCTP, and dTTP)
四、DNA所用的酶
Strand separation: Helicase解旋酶
Single-Strand DNA-Binding protein: SSBP
Topoisomerases拓扑异构酶
Primease引物酶
DNA polymearses: three types (DNA聚合酶)
DNA ligase:DNA连接酶
Telomerase:端粒酶
五、原核DNA复制中各蛋白
1、DNA Helicase:DNA解旋酶,DnaB
证明:使用了温度敏感型的突变体,在高温下DnaB活性逐步丢失
2、Single Strand DNA Binding Protein (SSBP ,单链结合蛋白 )
to kept the single stranded DNA seperated and promoting the progress of the replication enzymes.
3、DNA ligase,填补nick
4、Topoisomerase ( 拓扑异构酶 )
Type I topoisomerases:
Introduce temporary single-strand breaks (nicks),也叫做nicking-closing enzymes缺口闭合酶,and function to relax supercoiled circular molecules.(DNA超螺旋结构的解除)
These enzymes function without the input of energy in the form of ATP. 不消耗能量The energy is provided by the release of strain in the molecule.来自拓扑应力的解除。
Type II topoisomerase:
也叫DNA gyrases. DNA旋转酶。
These enzymes can either relieve supercoiling or introduce supercoiling into a DNA. 既能够解除超螺旋结构,又能够产生超螺旋
They require the energy of ATP for their action需要ATP提供能量
5、原核DNA pol
DNA pol I的作用:Removing of RNA primer, fill the gap that RNA primer leaves
DNA pol III的作用:The enzyme carries out the elongation of primers to make both the leading and lagging strands of DNA
6、真核DNA pol
7、Primase: Synthesis of the RNA primer
Primase is contained in a structure called the primosome.
8、Telomerases:
The enzyme is related to reverse transcriptase, in that it has a small RNA template as a part of the enzyme structure.